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1. Introduction 

The US Army Research Laboratory’s Robotics Collaborative Technology Alliance 
(RCTA) is an alliance of robotics research institutions working together to 
transform robots from tools that Soldiers use into teammates with which Soldiers 
can work.1 Currently fielded ground robots require a dedicated operator to control 
them during their operation and perhaps additional Soldiers to provide security for 
the operator. Thus, while serving as useful tools for performing potentially 
dangerous tasks, they are an asset that requires a lot of attention. To serve as a true 
team member, the robot should have an understanding of its environment, the 
capability to perform its required tasks with only occasional guidance, and the 
ability to recognize when it needs assistance. As a guiding scenario, the RCTA has 
been using a “screen-the-back” scenario, in which a robot is told to go behind a 
building and watch the back door to see if any people exit through it. The robot 
should be able to receive the command verbally or in text and carry out the mission 
without an a priori map, recognizing buildings and other relevant landmarks as 
needed. It should notify its team members as to its progress and request clarification 
when uncertain as to how to interpret a command. 

To test progress toward this goal, the RCTA capstone assessment evaluated how 
technologies developed by different members of the alliance functioned when 
integrated onto one system. The screen-the-back scenario begins when the robot 
receives instructions in a structured language. These instructions give positions to 
which the robot should navigate and objects to be used as landmarks. If the robot 
successfully navigates to the correct position, it will detect and orient toward a door 
on the building, subsequently detecting and tracking pedestrians exiting through the 
door. If it is not successful, a human-robot interaction (HRI) interface is available 
to get the robot back on track. Here, we present results from the experiments testing 
semantic navigation and perception, door detection, and pedestrian detection and 
tracking. These tests evaluated each component separately but as a component of 
the integrated system. Component testing of HRI was presented in Hill et al.2 

Semantic navigation is navigation using semantically defined goals and landmarks, 
which are identified during the run by semantic perception. For example, one 
command given to the robot was “stay to the right of the building; navigate to the 
front of a traffic barrel behind the building”. To be fully successful, the robot was 
expected to identify the building correctly and move around the right side of the 
building to within 3 m of a traffic barrel placed behind the building. The assessment 
of door and pedestrian detection began with the robot placed near a building having 
at least 2 doors. To be fully successful at door detection, the robot was expected to  
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detect all doors (within view of its position) on the target building. Success at 
pedestrian detection required the detection and tracking of 1–3 pedestrians, who 
emerged from 1 or 2 doors, and walked away from the doors along various paths.  

In the next section, we describe the integrated system and the technologies it used. 
Section 3 describes the methodology of the assessment, section 4 presents the 
assessment results, and the last section contains our conclusions.  

2. The Integrated System 

In this section, we describe the equipment and technology that played a key role in 
this assessment. We start with the robotic platform, including the sensors and 
computational power that support the intelligence architecture. Next is the 
perceptual system, which identifies objects in the world, and the world model, 
which is the robot’s internal representation of these objects. Then we describe 
aspects of the intelligence architecture in action: navigation, search, and 
observation. Navigation receives a navigation command and produces a plan for 
satisfying the requirements of the command. Search detects doors and orients the 
robot toward them. Observation detects and tracks pedestrians. A mission is 
decomposed into a sequence of actions (e.g., navigate, search, observe), where each 
action has its own goal. This goal is generally the precondition of the next action in 
the mission plan. In the screening mission, the robot first needs to navigate to the 
target area of reconnaissance, and when the robot has reached the target area, the 
search for doors is triggered. The completion of the search action is the precondition 
for the observe action. This chain of actions constitutes the mission. A mission 
planner monitors the chain, directing the next action to begin when the previous 
one has achieved its goal.  

2.1 Robotic Platform 

The robot used in the integrated assessment is a Clearpath Husky, equipped with 
the General Dynamics XR 3D LADAR sensor, Bumblebee stereo camera, and 
Adonis camera as shown in Fig. 1. The XR LADAR sensor is mounted 0.7 m above 
ground, which creates a dead zone around the robot of an approximately 4-m radius. 
A Hokuyo UTM-30LX scanning laser sensor is installed at 0.25 m for obstacle 
detection in the dead zone. Within the body of the robot are 4 Mac Mini machines, 
each with 2.3-GHz quad-core processors and 8-GB memory. During the testing, a 
laptop was tethered to the robot to act as a substitute for HRI modules, which were 
not present for the component tests. The computers run software modules from 
researchers at different institutions. These different software modules are integrated  



 

3 

through the RFRAME framework developed at General Dynamics. RFRAME is a 
transport agnostic middleware, supporting multiple simultaneous protocols, (e.g., 
Joint Architecture for Unmanned Systems, Robot Operating System, and Neutral 
Message Language). By abstracting and optimizing differences between 
environments, RFRAME allows researchers to work in their preferred software 
environment but as part of an integrated system. 

 

Fig. 1 Robot used for the assessment  

2.2 Perception 

The classification of terrain and detection of objects required different perceptual 
algorithms. First, a semantic classifier is used to classify regions of camera images.3 
Each pixel within the 2-dimensional (2-D) image is labeled as being one of several 
types: building, grass, tree, sky, concrete, asphalt, gravel, car, traffic barrel, fire 
hydrant, or unknown. Figure 2 shows an example of an outdoor scene with pixels 
colored by label. This approach to classification was shown by Lennon et al.4 to 
perform well on outdoor terrain classification, although at the time of the study, the 
classification did not include the categories of traffic barrel, fire hydrant, or car. 
Once labeled, the 2-D images are fused with 3-dimensional (3-D) LADAR data to 
create colorized, semantically labeled 3-D point clouds. The points comprising the 
object may well have different labels, and the object label is chosen using a 
Bayesian approach.5 Figure 2 shows a traffic barrel and a fire hydrant, with colored 
labels for the points. Although some points on the fire hydrant and traffic barrel are 
labeled as being of class “car” or “unknown”, the correct objects are still detected. 
As the classification of whole scenes is the primary purpose of the semantic 
classifier, every pixel within each image is given some type of label, with the pixel  
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labels chosen to give the best overall result, even at the expense of mislabeling 
small subregions. As objects tend to be small subregions when viewed from a 
distance, the semantic classifier thus sacrifices object detection capabilities for 
better overall scene recognition. Consequently, during the assessment, the semantic 
classifier was complemented by an object detector, which examined subregions of 
each image to detect specific objects: traffic barrels, fire hydrants, cars, and gas 
pumps.  

 

Fig. 2 An example of semantic object detection: actual objects (left), 3-D point cloud images 
(right) 

This object detector used an active deformable part model (ADPM) method.6 With 
deformable parts models, objects are recognized by their parts, which may be 
deformed into different configurations. Although classification by such methods 
can be slow, the implementation in Zhu et al.6 allowed the classifier to run in real 
time on the robot. This detector was used for detecting traffic barrels, fire hydrants, 
gas pumps, and cars. Fig. 3a shows assessment results for ADPM object detection 
for finding gas pumps and a traffic barrel, and Fig. 3b shows doors detected by 
DPM and RANdom SAmple Consensus (RANSAC).  

   
(a) (b) 

Fig. 3 An example of ADPM object detection  

A different deformable part model (DPM) was used for detecting doors. In this 
instance, the search was speeded up by the knowledge that a door can only be 
located on the vertical surface of a building. Thus, the door detection algorithm first  
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detects façades using the RANSAC algorithm to narrow down the search area, and 
this allows the model to run in real time on the system. An example of the results 
of door detection is shown in Fig. 3. This real-time perception allows the robot to 
maintain a current model of the world around it. Semantic objects detected through 
these perception approaches are added to the robot’s world model, and are updated 
as the robot’s viewpoint changes over time. All mission commands and planning 
are interpreted according to the robot’s model of the world, which we now describe.  

2.3 Common World Model 

The intelligence architecture is built around a common world model (CWM).7 
Traditional robot architectures define the world model as an abstract notion, which 
contains the various data and intermediate representations. The CWM defines and 
instantiates the data model for the intelligence architecture with a data-centric 
approach, providing common, centralized, and intelligent data store services.  

The world model combines data that is metric (e.g., sensor data and aggregates), 
and semantic (e.g., class descriptions and instances), with the robot’s self-
knowledge (e.g., position, mission status, and goal). The world model is an 
intelligent data store, and not just a database. Internally, the world model knows 
how the various data sources interrelate, and, when appropriate, propagates changes 
between the metric, semantic, and self-levels. At the metric level, CWM efficiently 
represents and updates sensor data taken from a robot's environment in a 
multihypothesis, multiresolution map. At the semantic level, objects represent 
symbolic information, enabling the abstract reasoning needed for intelligent 
behavior. Here, CWM maintains semantic information from perception modules 
and provides methods for client modules to search for semantic objects that are 
relevant to a specific mission. For example, a point cloud is stored at the metric 
level, and classified as a wall. The label of wall is stored at the semantic level. A 
bounding box is established at the metric level, and adjacency to other walls and 
membership as part of a building is established and stored at the semantic level. 
There is a method for the navigate action to find this building when a navigate 
command is given with respect to a building, as well as methods for finding other 
relevant objects that are recorded in similar metric-semantic terms. Finally, self-
information contains data relative to the robot itself. Tracking self-knowledge, such 
as current capability, component status, and task execution states, enables the robot 
to reason, and adapt its performance. 
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2.4 Navigation 

Navigation begins with a command issued to the robot through an HRI interface. 
This command, called a tactical behavior specification (TBS), is in a structured 
language that is used for communication among software modules within the 
intelligence architecture. The TBS language supports a rich set of constraints that 
leverages spatial relationships among objects in an environment. As an example, 
consider the command “stay left of the building; navigate to a traffic barrel that is 
behind the building”. The robot searches the world model for a building in front of 
it, predicts parts of the building it cannot observe, predicts a position for the traffic 
barrel behind the building, and plans a path to that goal. 

In Fig. 4, the left image show the robot’s camera view with some semantic labels. 
The right side show the robot’s model of the world, which includes perceived 
objects, such as the front walls and the traffic barrel, as well as predicted objects, 
like the rest of the building and the predicted traffic barrel behind the building. In 
this example, the command includes 2 landmarks, a building and traffic barrel, but 
the robot’s current world model contains only a set of walls and a predicted 
building. This inconsistency causes low grounding confidence, which, in turn, 
enables geometric spatial reasoning. Based on the context in the command, a traffic 
barrel must be behind the building, so an object is hypothesized behind the building. 
Now, the world model includes a building and a traffic barrel, both predicted. After 
symbol grounding is done with sufficiently high confidence, the robot computes a 
navigation cost map that best satisfies the action constraint to “stay left of the 
building” and plans a path accordingly. Technical details of the navigate action can 
be found in Oh et al.5 When the navigate action is completed, the search action 
begins. 

 

Fig. 4 The robot’s view and predictions for a navigation TBS 
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2.5 Search 

The search action positions and orients the robot, relative to an object of interest to 
the human teammate. For example, with the command to “screen the back of the 
building”, the detected building in the world model is the goal and the robot would 
reorient towards the center of the building to complete the navigate action. Once 
this orientation was achieved, the mission planner directs the search action to begin, 
and provides the type of object to search for (a door, in this assessment). The door 
detection algorithm is always running as part of the perception system, so doors in 
the scene might already be registered in the world model. In case they are not, the 
action provides a fixed amount of time for the door detection algorithm to report 
new detections. After this time expires, the search action will report the number of 
doors that it found within a configurable field of view. The intention is to have the 
human teammate choose an object from among the multiple options that would be 
displayed in the HRI interface (i.e., all doors found within the allotted time). Once 
the human teammate selects an object, the robot would then reorient toward that 
object to begin the observe action. This interaction was not tested as part of these 
preliminary experiments. Instead, the robot was programmed to orient toward the 
closest door to its current heading vector. Once this orientation was complete, the 
search action sent a message to the mission planner, and the mission planner 
directed the observe action to begin. 

2.6 Observe 

The observe action registers pedestrian detections and reports them to the world 
model. This action assumes that a previous action has positioned and oriented the 
robot relative to the object that is being observed. When the mission planner directs 
the observe action to start, the action begins listening to the output from the 
pedestrian detector that is already sending pedestrian detection messages. 
Pedestrian detection messages contain pixel locations for a box that encapsulates 
the individual parts of the detected person8 for every detected person in the source 
image. The mapped LADAR pixels within each pedestrian detection box are 
segregated from the LADAR pixel cluster, and clustered using Euclidean Cluster 
Extraction.9 If any of the resultant clusters fit a geometric heuristics check, and if 
there are no previous pedestrian tracks of the same shape close by, a new “person” 
object is added to the world model. Otherwise, if there is a track nearby that matches 
in shape, that track is updated. For this assessment, the robot continued to observe 
in this state until the system was shut down. 
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In the observe action example shown in Fig. 5, 2 people exited from the middle and  
right doors on the back of a building and stood stationary for approximately 5 s, 
allowing the pedestrian detection algorithm to publish detection boxes and correlate 
LADAR points in 3-D. They then walked adjacent to the back of the building until 
they were out of the LADAR’s field of view. As shown in Fig. 5a, the lighting 
during this portion of the assessment provided challenges to the pedestrian 
detection. Figures 5b and 5c show the pedestrians in the world model as point 
clouds on the metric level (5b) and as semantic objects (5c). The sequential 
execution of the navigate, search, and observe actions constitutes a complete 
mission.  

 

Fig. 5 An example of pedestrian detection 

3. Assessment Methodology 

All parts of the capstone assessment presented here took place in October 2014 at 
the Combined Arms Collective Training Facility (CACTF) at Fort Indiantown Gap, 
PA. The CACTF is composed of 13 buildings and 5 streets, representative of a 
neighborhood of a few blocks. An overhead view of the CACTF is presented in  

 

 

      (a) 

 

       
       (b)             (c) 
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Fig. 6, with 3 buildings used as test sites distinguished by labels. The church and 
the bar were the sites of most runs evaluating semantic navigation and perception, 
and of all runs testing door and pedestrian detection. The gas station was also used 
as a test site for semantic navigation and perception. The space between the gas 
pumps and the building behind it is used as a storage area for metal lockers, 
concertina wire, and metal barrels, providing a cluttered environment within which 
perception was difficult. The church, by contrast is a simple building without 
clutter, except for trash cans in one front corner. It stands apart from other buildings, 
is made of cinderblocks, and has tall windows with gray wooden shutters, and gray 
doors. The bar is not as cluttered as the gas station, but has a more complicated 
façade, with doors and windows set back from the street by several feet. It is also 
surrounded by other buildings, requiring the semantic navigation system to use 
landmarks to help select the correct building. 

 

Fig. 6 Overhead view of the CACTF 

3.1 Experimental Design for Semantic Navigation and 
Perception 

Evaluating semantic navigation and perception required determining how well the 
system could navigate when given directions in terms of relative locations and 
semantically described goals and landmarks. The assessment described here 
evaluated system performance in executing 30 TBS commands. The 30 commands 
given to the system are contained in Table 1. These commands were divided into 
12 different vignettes, which varied the 1) building, 2) orientation of the system,  
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3) number and type of semantic objects, 4) navigation constraints, and 5) the 
presence of clutter. Vignettes and associated TBS runs were developed to leverage 
the physical constraints of the CACTF, while providing varying levels of difficulty 
for semantic perception and navigation within the context of the screening mission. 
The design involved 2 replications of each of the 30 commands, but on different 
systems, operating in parallel at different test sites, for a total of 60 planned runs. 
The design was structured, but in statistical terms was necessarily unbalanced in 
order to provide more data emphasis to specific scenarios that had proven 
challenging in previous assessments. With limited time on the CACTF, only 54 of 
the planned 60 runs were conducted, although each of the 30 TBS commands was 
tested at least once.  

Table 1 TBS commands for all runsa 

Vignette Runs Tactical Behavior Specification by Run (Run in Parentheses) 

1 1–3 Navigate to the traffic barrel near the building (1)/car (2)/fire hydrant (3). 

2 4–5 Navigate to the traffic barrel near the building (4)/car (5)/fire hydrant (6). 

3 7–9 Stay left (7)/right (8,9) of the building; navigate to a traffic barrel that is left 
of (7,9)/behind (8) the building. 

4 10–11 Stay left (10)/right (11) of the building; navigate to a traffic barrel that is left 
of (10)/behind (11) the building. 

5 12–13 Stay left (12)/right (13) of the building; navigate to a traffic barrel that is left 
of (12)/behind (13) the building. 

6 14–15 Stay right of the car; navigate to a traffic barrel that is behind (14)/left of (15) 
the car (14)/building (15). 

7 16–17 Stay left (16)/right (17) of the traffic barrel; navigate to a fire hydrant that is 
behind the building. 

7 18 Stay right of the fire hydrant; navigate to the right of the building that is near 
the fire hydrant.  

8 19 Stay right of the fire hydrant; navigate to a car that is behind the building. 

8 20 Stay left of the fire hydrant; navigate behind the building that is behind the 
fire hydrant. 

9 21 Stay right of the car; navigate to the left of the building that is near the fire 
hydrant. 

9 22 Stay right of the traffic barrel; navigate behind the building that is near the 
traffic barrel. 

9 23 Stay left of the traffic barrel; navigate to the fire hydrant that is left of the 
building (and left of your current position was added for one replication). 

10 24 Navigate to the left of the gas pump. 

10 25–26 Stay left of the gas pump; navigate to the building (25)/traffic barrel (26) that 
is left of the gas pump. 

11 27 Navigate to the building that is right of the car. 
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Table 1 TBS commands for all runsa (continued) 

Vignette Runs Tactical Behavior Specification by Run (Run in Parentheses) 

11 28 Navigate to the building that is left of and behind the car. 

12 29 Stay right of the car; navigate to the building that is behind the car. 

12 30 Stay right of the car; navigate covertly to the building that is behind the car. 
a Within most vignettes, the basic structure of the command was the same, with goal and reference objects 
changing. When this is true, the runs during which the particular goal or reference object was used is in 
parentheses behind the object. For example, “building (1)/car (2)/fire hydrant (3)” means the relevant object 
was building for run 1, car for run 2, and fire hydrant for run 3. 

3.2 Evaluation of Semantic Navigation  

Semantic navigation was evaluated by human observers, who graded each run on a 
scale of 0% to 100%, with gradations of 20% (i.e., 0, 20, 40, 60, 80, 100). The 
scored was based on how complete the observer perceived the run to be, without 
taking into account the technical specifications of the robot. Thus, whether the robot 
considers itself close enough to an object to be finished, or whether the robot is 
acting based on a perception of the world different from that of the human observer, 
is not considered. These grades were primarily used to develop high-level 
quantitative summaries. The scores were also treated qualitatively, and reported in 
terms of frequency distribution to clarify findings. Decoupling the human 
evaluation from technical considerations may occasionally penalize or reward 
robotic behavior that could easily be different with different parameter settings. 
However, since the robot is intended to eventually work with human teammates, 
the final evaluation of its performance is based on the opinions of humans standing 
in for those teammates. 

As the scoring was performed by 2 separate observers, evaluating separate (but 
identically configured) robots, there was a concern as to how similarly scoring 
criteria would be applied. To alleviate this concern, the test director moved back 
and forth between the 2 observers to verify that their grading was consistent enough 
to be considered jointly, rather than analyzing the scores by observer. The 2 
observers repeated the same trials to the extent time allowed, and here we consider 
those repeated trials as replications. Thus we consider it reasonable to subsequently 
analyze the scoring without reference as to which observer did the scoring. 

3.3 Evaluation of Perception 

Semantic perception has been previously evaluated in Lennon et al.4 There, the 
labeling of each pixel within an image, by an algorithm, was compared with similar 
labeling done by a human, and the algorithm was graded based on the number of  
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pixels correctly labeled in each image. Pixel-based evaluation is limited, however, 
in that it does not take account of how errors in the labeling affect the intelligence 
using the labeling. For example, consider Fig. 7, representing 2 images (white 
rectangles) in which some pixels have been correctly labeled as car pixels (dark 
blue) and others pixels are incorrectly labeled as car (light blue). In the left image, 
the intelligence architecture using this perceptual system would still understand 
there to be one car, although larger than the true one, while from the right image, it 
would understand there to be 2 separate cars. These distinct errors would be graded 
as the same as long as the same number of pixels are incorrectly labeled, but would 
have different effects on how the intelligence architecture relates to the world.  

 

Fig. 7 An example illustrating a limitation of pixel-based evaluation 

An evaluation of perception as part of an integrated system should take into account 
how the intelligence architecture is using the perceptual information, which is an 
indication on overall system performance. The intelligence architecture that plans 
semantic navigation was relying on perception to populate its model of the world, 
based on which model it developed a plan for accomplishing its mission. 
Consequently, we intend here to evaluate semantic perception based on how closely 
the world model it populates represented the actual world to which the robot was 
exposed. This method will be used to evaluate the labeling of small objects. The 
labeling of terrain features was not used as part of semantic navigation and was 
assessed in Lennon et al.,4 while the labeling of smaller objects was not, since such 
capabilities had not been implemented at that time. For this assessment, we 
evaluated the capability of the Carnegie Mellon University (CMU) and University 
of Pennsylvania (UPenn) systems to identify traffic barrels and fire hydrants and of 
the UPenn system to identify cars and gas pumps. This evaluation was based on the 
number of false positive and false negative object detections, and on the number of 
times false positive detections occurred. 

3.4 Design and Evaluation of Door and Pedestrian Detection 

The assessments of door detection, and of the detection and tracking of pedestrians, 
were divided between the church and bar. Nine platform locations at the church, 
and 8 at the bar, were arranged in a lattice with rows starting at the middle and ends 
of the buildings, and additional columns spaced evenly at 10-m intervals. The  
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incomplete lattice at the bar was due to the close proximity of a neighboring 
building. The layouts for these designs are shown in Fig. 8. For the façade feature 
detection, 3 initial orientations were used at the church: platform pointed parallel 
to the building, away from the building, or in between the 2 buildings. At the bar, 
3 orientations were used for some positions and 2 for others, with the “in between” 
orientation being omitted in those cases. This was done to compare the numbers of 
doors detected at the church and bar. The church had 2 doors to detect and the bar 
had 3; therefore, different numbers of orientations permitted each building to 
provide 54 possible door detections. In Fig. 8, the black dots at the bar represent 
positions at which 3 orientations were used, and 2 orientations were used at all other 
bar positions. The red dots represent the positions at which pedestrian detection was 
evaluated. Columns are spaced at intervals of 10 m, and the angles represent the 
initial orientation of the robot for door detection. The number of doors detected at 
each position was recorded for evaluation.  

 

 

Fig. 8 Layout for door detection 

The pedestrian search was conducted with only an initial orientation toward the 
building. Pedestrians emerged from building doors, or from a standing position in 
close proximity to building walls, and then advanced in a variety of coordinated 
movements, including parallel in the direction of the platform, parallel 
perpendicular to the direction of the platform, and crossing or fanning out 
movements. For half the runs, traffic barrels were placed so that they would 
partially obscure one or more pedestrians at some point during their route. Two or 
3 pedestrians appear in each run, and the robot was evaluated on how many correct 
detections it made.  

 



 

14 

4. Results 

4.1 Results for Semantic Navigation  

Within this section, the completion scores are broken down in tabular form over a 
variety of test conditions. A brief interpretation of each table provides insights as 
to the conditions under which the technology performed well, and the conditions 
that proved challenging. The completion score is the subjective assessment of the 
degree to which the platform accomplished the mission. In Table 2, the subjective 
scores are treated quantitatively for a concise representation of performance over 
the 12 vignettes. Subsequent tables are presented as frequency distributions for the 
subjective scores, to provide greater detail for individual run performance, both in 
aggregate and against specific test conditions. Table 3 presents the score for each 
run and states the evaluator’s reason for assigning a score less than 100%.The 
average score over each vignette is presented in Table 2, which also includes details 
about the vignette.  

Table 2 Vignette descriptions 

Vignette No. and Description Location No. 
Runs 

Avg. 
Score 
(%) 

Runs  
< 100a 

(%) 
TB/FH/Carb 

1 In front with no clutter Church 6 90 80, 60 3/1/1 
2 In front with clutter Church 6 100 … 3/1/1 

3 Single building and no 
clutter Church 6 90 80 (3) 3c/1/0 

4 Single building and clutter Church 4 90 80 (2) 3c/1/0 

5 Single building from the 
side Church (side) 4 65 60 (2), 40 3c/0/0 

6 Around a car and building Church 4 65 60 (2), 40 3/2/2 

7 Choosing between 
buildings Bar 3 73 60 (2) 2/2/0 

8 Choosing between 
buildings Bar 3 73 80, 40 0/1/2 

9 Choosing between 
buildings Bar (side) 6 90 80 (3) 1/2/1 

10 Around a gas pump Gas station 6 93 60 2/0/0 
11 Around a car Gas station 4 80 60 (2) 0/0/1 
12 Around a car 50 meters Bar to church 2 90 80 0/0/1 

a For the column Runs < 100, score (x) indicates x number of runs with that score.  
b The TB/FH/Car column indicates the number of traffic barrels, fire hydrants, and cars in the vignette. 
c Either 3 or 4 appeared, depending on availability. 
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Table 3 Scores by run 

Vignette Run Score 1/2 Reason for Scores Below 100% for Replications 1/2 

1 1 80/100 False barrel detection led it up the steps where it was stopped for 
safety/NA 

1 2 60/100 Robot stopped on the side of the car opposite the barrel/NA 
1 3 100 100 NA/NA 
2 4 100/100 NA/NA 
2 5 100/100 NA/NA 
2 6 100/100 NA/NA 
3 7 100/100 NA/NA 
3 8 80/80 Stopped early on route to barrel/Stopped early on route to barrel 
3 9 80/100 Found barrel but did not stop/Stopped early on route to barrel 
4 10 80/100 Stopped too far from barrel/NA 
4 11 80/100 Stopped too far from barrel/NA 
5 12 60/100 Did not stop at the barrel/NA 

5 13 40/60 Went up the steps and stopped for safety/Battery died during 
mission 

6 14 60/100 Went behind the car, then turned around and came back/NA 
6 15 40/60 Classified car as a barrel/Classified car as a barrel 
7 16 60 Went past the fire hydrant and did not see it 
7 17 60 Went past the fire hydrant and did not see it 
7 18 100 NA 
8 19 40/80 Robot collided with building/Went past the car 
8 20 100 NA 
9 21 100/100 NA/NA 
9 22 80/80 Stopped before reaching the back/Stopped before reaching back 
9 23 80/100 Did not see the fire hydrant/NA 
10 24 100/60 NA/Stopped in front of the gas pump 
10 25 100/100 NA/NA 
10 26 100/100 NA/NA 
11 27 60/100 Stopped in front of vehicle, did not go around./NA 
11 28 100/60 NA/Stopped early after seeing a hill as an obstacle 
12 29 100 NA 
12 30 80 Correct navigation, but nothing covert about it 

Notes: Most runs were replicated, and the score column shows the scores for the first/second runs when 
replication occurred. For replications in which the score was below 100%, the reason for the score is 
recorded. Otherwise, the record is NA (not applicable). 

In vignettes 1 and 2, the mission was a direct go-to route, with a semantically 
identified goal within line of sight of the start point. The goal for these vignettes 
was always a traffic barrel, but multiple traffic barrels were in the scene, along with 
a vehicle, church building, fire hydrant, and cemetery wall. These other standard 
objects in the scene forced the system to choose from among several possible 
objects and provided goal references. For example, in vignette 1, run 3, the TBS 
was “navigate to the traffic barrel near the fire hydrant”. The clutter introduced in 
vignette 2 required the robot to avoid obstacles that were below camera height, so 
as not to interfere with semantic classification. The average score results suggest a 
high level of performance in these basic vignettes, with 10 of 12 runs achieving the  
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goal 100% consistent with expectations. In 1 of 2 unsuccessful runs, a false 
detection for the traffic barrel goal near the door of the church caused the system to 
approach the door, and the Husky platform was stopped while attempting to climb 
the steps. In the second, the platform stopped on the sidewalk, near, but on the other 
side of a vehicle from the goal. 

Vignettes 3 and 4 were more challenging, in that the goal was not within line of 
sight for the semantic classifier. These 2 vignettes moved the mission closer to the 
screen-the-back ideal, where the existence of the identified goal is initially 
supported only by the trusted command of the operator and must be discovered by 
the system as it semantically navigates to the described location. Intermediate 
directions, commanding the system to move around a specific side of the building 
on the way to the goal, added complexity. Further, these runs called for a greater 
distance to be traveled, with more opportunities for error as the system interacted 
with the standard objects and the building. The average scores, 90% for each 
vignette, again show a high level of performance. Of the 5 runs receiving an 80% 
score, 4 stopped just short of the goal and 1 turned away from the goal toward the 
end of its route and traveled off course.  

Vignettes 5 and 6 changed the initial perspective of the robot to challenge its sense 
of what the front of the building was. Vignette 5 started the platform on the left-
side wall of the church, facing that wall. In this position, what was formerly the left 
side of the church would now be interpreted as the front. From this position, when 
asked to go to the left, the robot found the traffic barrel goal in one run (100%) but 
completely missed it in another (40%). When asked to go around the church to the 
right, the robot had difficulties in navigating around the porch in front of the church 
and in getting around the church (60% for both). Some of these difficulties may 
have been because the XR LADAR sensed buildings in the distance, creating 
ambiguity as to which building the robot was to go behind. Vignette 6 offset the 
platform, still in the front of the church, but at such an angle that both the front and 
right side of the church could be seen by the XR LADAR, thus introducing 
ambiguity in the building orientation. In vignette 6, cars served as intermediate 
direction references (e.g., stay left of the car). There was no line of sight to the goal 
for any of these runs. The traffic barrel behind the vehicle was found each time, but 
in one run, the platform doubled back to the start rather than remaining at the goal 
(100% and 60%). The runs sending the robot to the left of the church both failed 
because the robot mislabeled a vehicle as the traffic barrel goal (40% and 60%). 

Vignettes 7 through 9 leveraged the more complex building structures around the 
bar. At the bar, 2 buildings were always in the initial view, the bar and one other. 
To successfully complete 3 of the 8 planned runs, the robot needed to interact with 
at least 3 buildings. In addition, intermediate directions for navigation and goal  
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references were expanded to include any of the standard objects. For example, in 
run 16, the TBS was “stay left of the traffic barrel; navigate to a fire hydrant that is 
behind the building”. Only one run could be considered as having line of sight to 
the goal from the starting position. Two of the 3 runs in vignette 7 received scores 
of 60%. In one case, the robot did not see the fire hydrant. In the other, it is likely 
that the building predictor sized the building as bigger than its actual size, thus 
limiting the ground for an acceptable path to the goal. In vignette 8, 2 runs had 
difficulty clearing the building to the right. The likely cause was inadequate 
building prediction resulting from an irregular corner of the building (a corner 
porch at 45°). It appeared that when the robot encountered the first corner, it 
interpreted the “end” of the building as having been reached and then turned into 
the angled corner of the building. Of the 3 runs in vignette 9 that scored 80%, the 
fire hydrant was not detected in one, and in the other 2, the robot did not get behind 
the building to the goal. It is likely that the building predictor placed the back wall 
in the wrong location, so that navigation thought the robot was “behind” the 
building when it was actually still out in the open. 

Vignettes 10 and 11 introduced gas pumps as an additional semantic object, 
together with the bar and other background buildings. Five unique runs were 
planned, and each of the 5 was completed in at least 1 replication. Most runs (7 of 
10) were scored at 100%. Vignette 10 focused on the gas pumps as intermediate 
direction and goal references. The goal area was visible from the starting position 
in the first 2 runs of vignette 10. The 60% run occurred when the robot stopped in 
front of the gas pumps instead of to the left side. In vignette 11, the gas pumps were 
in the scene, but the focus was reaching buildings relative to a vehicle. In one 60% 
run, the robot stopped at the vehicle goal reference and did not proceed to the goal. 
In the other 60% run, the robot was planning to the correct building but did not try 
to overcome a hill along the way. 

Vignette 12 started the robot in front of the bar, and directed that it travel covertly 
or quickly around a car to the church in the distance. In both cases, the robot 
traveled around the car to the church as instructed. The 80% run asked for covert 
movement, which in this instantiation involved simply moving the robot to the side 
of the street, on the periphery of the scene. No covert action was evident. 

Tables 4–6 provide a further breakdown of the results, and complement the above 
discussion. Here, the data was parsed according to specific test conditions. Each 
run was characterized in terms of the specific building, line of sight, clutter, goal 
reference, and goal. In Table 4, the frequency in obtaining each score is broken out 
by building or site within the CACTF. This is an aggregation of the previous 
description of the vignettes. Vignettes 1–6 occur at the church, vignettes 7–9 occur  
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at the bar, vignette 10 occurs at the gas pump, and vignettes 11–12 are considered 
multiple buildings. We see that 30 of 54 of the runs resulted in a perfect score and 
only 13 of 54 scored less than 80%. Those runs with poorer performances occurred 
in approximately the same percentage at the bar and church locations. 

Table 4 Score distribution by site 

Score Bar  Church Gas pump Multiple All 
40 1  2 0 0 3 
60 2  5 1 2 10 
80 4  6 0 1 11 

100 5  17 5 3 30 
All 12  30 6 6 54 

Table 5 highlights the impact of clutter and line of sight. Clutter comparison was 
performed on pairs of runs, differing only in the presence of clutter, over the first 4 
vignettes at the church. There was no indication that clutter hindered the robot’s 
ability to complete the mission. A comparison based on whether the goal was within 
the initial line of sight of the robot is also shown. Both conditions were included at 
the church, bar, and gas pump. The table suggests that when the goal is within view 
at the start, the likelihood of getting there successfully is much greater. 

Table 5 Score distribution by clutter and line of sight 

Score Clutter Line of Sight 
No Yes All Yes No All 

40 0 0 0 0 3 3 
60 1 0 1 2 8 10 
80 3 2 5 1 10 11 

100 6 8 14 15 15 30 
All 10 10 20 18 36 54 

Table 6 shows the average score and number of runs for each goal reference by goal 
combination. Goal reference describes the goal relative to another object’s position. 
The goal is the object to be reached. In aggregate, we see that the average score was 
85% over the 54 runs. The marginal average percentages do not suggest any serious 
problem with goal references or goals. It is was potentially interesting to look at the 
average percentages in the margin associated with a specific object, for example 
fire hydrants as a goal yielded a 75% average score, and as a goal reference yielded 
a 100% average score; however, there were no definitive patterns seen. 
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Table 6 Average percentage score and count by goal reference and goal 

Goal 
Reference 

Goal 
All 

Building Fire 
Hydrant 

Gas 
Pump 

Traffic 
Barrel Vehicle 

% No. % No. % No. % No. % No. % No. 
Building …  75 4 … … 82 20 60 2 79 26 

Fire Hydrant 100 4 … … … … 100 4 … … 100 8 
Gas Pump 100 2 … … … … 100 2 … … 100 4 

NA … … … … 80 2 … … … … 80 2 
Traffic 
Barrel 80 2 … … … … … … … … 80 2 

Vehicle 83 6 … … … … 87 6 … … 85 12 

All 90 14 75 4 80 2 86 32 60 2 85 54 

Note: NA = not applicable 
 

4.2 Results for Semantic Perception  

Evaluating perception based on the robot’s world model presents several 
challenges. First, due to difficulties in localization, the robot will not know 
precisely where it is at all times. Since the perceptual system records object 
positions relative to the robot’s position, this means that errors in localization will 
lead to objects perceived to be at incorrect locations. As we currently have no 
accurate ground truth for robot position (GPS can be off by 10 m), we cannot always 
distinguish errors in localization from errors in perception, at least in terms of object 
location. Thus, an object recorded as several meters from the closest ground truth 
object of its class could be a false positive, or it could be an error in localization. 
Likewise, if a ground truth object has no perceived objects near it, that could be a 
false negative, or it could be a localization error, with the object having been 
perceived but recorded at a different location. As a consequence, evaluations of 
perception based only on the distances of perceived objects from ground truth 
objects will not be reliable until we have a better method of establishing ground 
truth for the position of the robot and the objects.  

However, we do have the ability to play back the robot’s construction of its world 
model as it runs through the mission. Combined with plotting the ground truth and 
perceived object locations on a map, this playback can give us some understanding 
of what the robot perceived. Consider Fig. 9, which shows, from left to right, 1) a 
plot of perceived traffic barrel positions (as orange discs), 2) an image from the 
world model, and 3) an evaluated version of the leftmost plot. The legend 
describing all symbols in the figure is in Table 7. Of the barrels plotted on the 
leftmost map in Fig. 9, which should be considered correct, which should be 
attributed to localization error, and which should be counted as perception errors?  
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Based on viewing the playback from the world model, one can discern that the robot 
did indeed perceive 2 different traffic barrels in the line between it and the car, and  
the one the evaluator determined to be incorrect is circled in red and labeled with 
the red number 1. Similarly, one can ascertain from the relative positions of objects 
simultaneously perceived that the other groups of barrels circled in red were false 
positives for the CMU semantic classifier. There were 4 false positive objects 
detected during the run, with no false negatives for the CMU classifier. For the 
UPenn classifier, there was one false positive traffic barrel and one false negative 
traffic barrel, indicated by the purple circles numbered 1 and 2, respectively.  

 
(a) (b) (c) 

Fig. 9 Map (a and c) and world model image (b) from run 4 

Table 7 Legend for plots of objects shown in Fig. 9.  

Object Marking 
(Fig. 9a and c) Object Marking 

(Fig. 9b) 

Traffic barrel (robot) Orange disc Traffic barrel 
(human) Orange square 

Car (robot) Green disc Car (human) Green square 

Fire hydrant (robot) Yellow disc Fire hydrant 
(human) Yellow square 

Gas pump (robot) Light blue circle Robot position Pink triangle 

CMU classifier error Marked in red … … 

UPenn classifier error Marked in purple … … 

Notes: Objects could be identified by either a human observer during setup (human) or by the robot during 
the course of the run (robot). In general, human-identified objects are squares, and robot-identified 
objects are discs. 

Simply denoting the number of falsely perceived objects gives an incomplete 
picture of the system’s perceptual abilities, however. The classifiers are running 
during the entire mission, and there may be a difference between an object (e.g., a 
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box) being classified as a traffic barrel once in passing or for the duration of the 
mission. To examine these different types of errors, we enumerated how many 
times the misclassification of each different object type occurred. For example, the 
left side of Fig. 10 shows a plot of traffic barrel observations during run 22. The 
CMU classifier detected a traffic barrel 303 times, and 59 of these were the false 
detection of the 1 traffic barrel circled in red. The classifier only detected one false 
object, but it was quite “certain” that the object was there. Meanwhile, the right side 
of Fig. 10 shows a plot of traffic barrel observations during run 24. The CMU 
classifier detected a traffic barrel 991 times, and 231 of these were the 8 false 
detections of the traffic barrels circled in red. There were more incorrectly classified 
objects in run 24, but some were incorrectly classified for only a brief period of 
time. In fact, 3 of the false positive traffic barrels were identified as barrels fewer 
than 10 times. There are other errors indicated in the images, and these are 
discussed, along with errors for the other runs, in the Appendix. 

 

Fig. 10 Plots of the perception results from run 22  

We evaluated perception within 4 vignettes. We chose vignettes 2, 3, 9, and 10, in 
each of which there were 3 runs, with no objects being moved between runs. Two 
of these vignettes were at the church, one at the bar and one at the gas station. We 
faced some challenges in creating the maps used for the evaluations. First, in the 
course of the testing, the robot began each run with an unknown orientation, and 
without a precisely mapped out initial position. Thus, the robot’s world model 
needed to be translated and rotated to correspond with maps of the world, and the 
exact parameters of this transformation are unknown. An evaluator needed to 
choose a rotation and translation based on which to evaluate the data. It should be 
noted that there is no reason to believe that semantic perception would be biased in 
determining the angle or distance of objects from the system, so we are not 
concerned about these properties being altered by our method of aligning the data. 
Second, under the time restrictions of testing, the precise mapping of every 
perceivable object would have led to a reduction in the number of runs we could 
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perform, and was not deemed to be worth the cost. As a compromise, the positions 
of objects were sketched on a map by the evaluators, leading to some lack of 
precision in the markings of the object locations. We have concluded that the 
precision is enough, however, for the method of evaluation we are using, in which 
objects are determined to be correctly or incorrectly detected based on their relative 
positions, with playback of the world model used for verification.  

The CMU classifier and UPenn object detector were employed to work together on 
the robot as complements, with the CMU classifier labeling everything within the 
environment as one of the classes described in Section 2.2, and the UPenn object 
detector looking only for traffic barrels, fire hydrants, cars, and gas pumps.  

Table 8 contains the ratio of false positives and false negatives to the true numbers 
of objects visible to the robot (for traffic barrels and fire hydrants). For fire 
hydrants, the CMU classifier tended to miss them at a higher rate than the UPenn 
detector. The CMU and UPenn systems missed one-half and one-quarter 
(respectively) of the observable fire hydrants. Meanwhile, the UPenn detector 
missed a substantial number of traffic barrels, while the CMU classifier 
substantially overcounted. As mentioned previously, however, with regard to false 
positives, we should consider not just how many false objects were detected, but 
how many of the object detections were false.  

Table 8 Ratio of false positives and negatives to true number of objects visible for traffic 
barrels and fire hydrants 

Classifier 
System 

Traffic Barrels Fire Hydrant 
False Positive False Negative  False Positive  False Negative  

CMU 39/50 (0.78) 0 0 (8/15) 0.533 
UPenn 3/50 (0.06) (11/50) 0.22 0 (4/15) 0.267 

 
Considering Fig. 11, we see that, although the detection at least 2 of false traffic 
barrel objects does imply that at least 10% of detections were false, there is no linear 
relationship evident between the number of detected objects and the ratio of false 
detections. The CMU classifier may see a large number of false positive objects, 
detecting them only sporadically, or a few false positive objects that it repeatedly 
detects as traffic barrels. As an example, we reconsider the right image of Fig. 10, 
which shows 8 falsely detected objects around the gas station. We counted how 
many times each object was falsely detected for this run. For the CMU classifier, 
the number of times the 8 traffic barrels were falsely detected were (from high to 
low): 95, 38, 33, 27, 25, 9, 2, and 2. Many of these detections would have occurred 
while the robot was sitting still, and it is not surprising that an object falsely 
detected once from a stationary position would have been repeatedly falsely 
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detected from that position. Those objects detected only a few times are like noise, 
objects that briefly appear, and then disappear. The UPenn detector appears less 
susceptible to such noise, although more prone to miss the traffic barrels. The 
current strategy of using 2 object detectors for some objects, seems to have worked 
well, give the results of the semantic navigation (see Section 4.1), and the CMU 
and UPenn detector seem to complement each other. Although running multiple 
perception algorithms is computationally expensive, it appears necessary given the 
current state of semantic perception, and the cost is likely worth it when compared 
with the cost of basing planning on faulty perceptual information. Still, even with 
2 perception systems running, at least 6 runs were unsuccessful due primarily to 
perception difficulties (see Table 3), and other failures may have been in part the 
result of perception issues. Moreover, in the case of traffic barrels and fire hydrants, 
these perception systems were working together to identify objects that were not 
occluded and clearly distinguished from the background (clearly to a human). This 
suggests that, even with continuing progress in perception, we should assume that 
semantic perception will still require substantial computational resources to 
perform object identification online. 

 

Fig. 11 Number of false traffic barrel objects detected vs. the ratio of false detections/total 
detections of traffic barrels 

4.3 Results for Door and Pedestrian Detection 

For the search activity at the church, there were 54 doors to be discovered: 3 
platform orientations by 9 lattice positions by 2 doors. For the bar, there were also 
54 doors to be discovered: 18 orientation and position combinations by 3 doors (see 
Fig. 8). High-level results for the search and observe portions of the preliminary 
experiments are reported in Table 9.
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Table 9 Evaluation of door and pedestrian detection by location 

Location Doors Founda Door Misses 
L/M/Rb 

Door Misses 
C/M/Fc Pedestriansa 

Side of the church 48 of 54 (89%) 5/NA/1 2/3/1 21 of 24 (88%) 
Back of the bar 45 of 54 (83%) 0/4/5 5/4/0 15 of 27 (56%) 

a The Doors Found and Pedestrians columns show the number of doors (pedestrians) detected out of the 
number presented in the scene, and the percentage. 

b The Door Misses L/M/R column shows the number of doors missed on the left/middle/right of the building. 
c The Door Misses C/M/F column shows the number of doors missed in the closest, middle, and farthest 
search distances. 

Among the 9 doors missed at the bar, the middle door was missed 4 times and the 
right-most door was missed 5 times. The misses were split evenly between the 
parallel and in-between initial orientations, with one miss resulting from the robot 
initially pointing away. Thus, no real difference can be claimed due to initial 
orientation; however, the clockwise turn of the robot swept left to right over the 
building façade, so more cycles were spent on doors to the left. Not surprisingly, 
among the 3, the left-most door was almost always identified. All runs resulting in 
missed doors at the bar were at the closest 2 rows to the bar façade. The 3-D 
orientation of the platform turning on the stone surface, coupled with the close 
distance to the building, may have prevented the sensor from receiving information 
above the doorframe height, thus providing an incomplete match with the door 
template. Fewer doors were missed at the church. Of those missed, 5 of 6 came 
from the 2 rows of starting positions closest to the façade. From a recall standpoint, 
the previous discussion suggests doors that are on the target building are found 
reliably. From a precision standpoint, the system often classified structures in the 
façade of nearby buildings, for example windows, as doors, although these 
instances were not recorded reliably enough for analysis. Detection of actual doors 
on buildings other than the target building was not a concern, as the intent would 
be that the system search for doors in the target building identified as part of 
semantic navigation, rather than accept any nearby door or window. 

Pedestrian detection was highly successful at the church, missing only 3 pedestrians 
out of the 24 presented. Each of the 3 not detected resulted from runs where 
pedestrians were executing a fanning out movement toward the platform. It is likely 
that the identifiers for the pedestrians in the scene were not seen over enough cycles 
to be recognized before the pedestrians had closed on the platform. Some attempt 
to mitigate this result had been established in the protocol. Pedestrians were to 
remain motionless for a few seconds before starting their route so that the system 
could acquire them. At the bar, 12 pedestrians were missed out of 27 presented. 
Among the 12, 8 were missed in movements toward the platform (7 fanning and 1 
crossing movement). The other 4 involved movements along the façade wall away  
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from the platform. The issue with both movement types could be the number of 
cycles that it takes to recognize the object as a person. Moving out of the platform’s 
10- to 15-m detection range could have led to the 4 misses of pedestrians moving 
down the façade. In addition to these observations, clutter that partially obscured 
the detected pedestrians often broke the track. The pedestrians reappeared on the 
other side of the clutter, but the pedestrian was moving, and the system was unable 
to reestablish the track. 

5. Conclusions 

In this study, we were able to assess important components of an unmanned ground 
system autonomously screening the back of a building for pedestrians. We 
considered the semantic recognition of objects, including buildings and structure 
along a proposed route, and navigation with respect to those objects. We also 
evaluated the ability to recognize important structures on the façade of a building 
where people on foot were likely to emerge, in addition to identifying and tracking 
pedestrians over a short distance. Generally, the architecture governing semantic 
perception and navigation seems to be working well. There is need for the 
expansion of semantically classified objects and greater reliability in classifying the 
included objects. False detections introduced into the world model hurt 
performance in some runs. However, a comparison of the current results 
(Appendix) with those obtained during a previous integrated research assessment10 
suggests that perception is functioning more reliably as part of the integrated 
system. The introduction of the UPenn object detector as a complement to the CMU 
semantic classifier likely contributed to the improved performance of the system. 
We would expect improvements in each of these components, and in the fusing of 
their results, to further improve performance. In movements relative to a building, 
building prediction as to size and orientation created situations where the robot 
navigation, though technically successful, would not be consistent with user 
expectations. Again, however, comparison with the results in Lennon et al.10 
suggests that building prediction is also functioning more reliably as a system 
component. The increase in sensor range introduces more ambiguity regarding 
which building or object is being referred to. In a parallel effort, HRI advances over 
voice, gesture, and text are being developed to support negotiation with the robot 
to reconcile ambiguities that are always going to be present to some degree.  

In door detection, the system performed reasonably well. However, improvements 
could be made with respect to the distances at which the detections could 
reasonably be expected to occur. Also, a more complete sweep of the façade to 
detect doors that were not sensed often enough to be detected would improve the 
rate of success. Pedestrian detection performed well when the pedestrians stayed in  
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position long enough for the initial detection to take place. Improvements to the 
speed of this initial detection would likely improve the overall performance of 
pedestrian detection and tracking.  

The capstone represents the conclusion of the first 5 years of RCTA research, but 
also serves as a baseline for the next 5 years. We expect these years to include 
improvements of specific components and generalization of the intelligence 
architecture to incorporate a wider range of capabilities. The basic capabilities and 
intelligence architecture of the system seemed sound, at least within the narrow 
range of scenario in which it was tested. We expect that the next 5 years will include 
generalization of the capabilities of the system to a variety of scenarios and possibly 
the ability to learn from repeated training within a scenario, as well as closer 
interaction with human teammates. 
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This appendix contains the evaluations of perception for 24 runs of the capstone 
experiment. The legend describing the objects in all the plots is contained in Table 
A-1. The description of the runs, including the tactical behavior specification (TBS) 
commands, is provided in Section 3, Tables 1 and 2. In some cases, runs needed to 
be repeated during experimentation due to platform failure, inference with the 
scene, or other reasons. This is recorded by a letter after the run. For example, run 
23b is a repeat of run 23. 

Table A-1 Legend for plots of objects 

Object Marking Object Marking 

Traffic barrel (robot) Orange disc Traffic barrel (human) Orange square 

Car (robot) Green disc Car (human) Green square 

Fire hydrant (robot) Yellow disc Fire hydrant (human) Yellow square 

Robot position Pink triangle Gas pump (robot) Light blue circle 

CMU classifier error Marked in red … … 

UPenn classifier error Marked in purple … … 

 
In Figures A-1 through A-12, false positives and false negatives are indicated by 
red circles for the Carnegie Mellon University (CMU) classifier and by purple 
circles for the University of Pennsylvania (UPenn) object detector. Each figure 
shows the evaluations for one run, with the replication on Husky 1 on the left, and 
that of Husky 3 on the right. Following each figure, Tables A-2 through A-13 show 
the following information (from left to right):  

1. The number of the Husky. 
2. The classification/object detection algorithm. 
3. The number and types of ground truth (GT) objects in the scene that 

would have been visible to the robot, (e.g., w T, x F, y C, z G means there 
were w traffic barrels, x fire hydrants, y cars, and z gas pumps in the 
scene). 

4. The number of false positive (FP) object detections, using the same 
notation as for the true number of objects. 

5. The number of false negative (FN) object detections, using the same 
notation as for the true number of objects. 

6. The remaining columns show the fraction of false detections over the total 
number of detections for each object type, for traffic barrels (TBs), fire 
hydrants (FHs), cars, and gas pumps. If an object was not detected, the cell 
is “NA”. The CMU classifier was only used to identify traffic barrels and 
fire hydrants (in addition to the terrain types listed in Section 2.2), so the 
car and gas pump column are not relevant for this algorithm. The UPenn 
object detector was used to identify all 4 types of objects. 
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Fig. A-1 Run 4: left shows Husky 1, right shows Husky 3 

 
Table A-2 Run 4 evaluation of perception 

Husky Alg. GT Obj. FP Obj. FN 
Obj. 

False/All 
TB Obs. 

False/All 
FH Obs. 

False/All 
Car Obs. 

False/All 
Gas Obs. 

1 CMU 3 T, 1 F 4 T 0 550/1,120 0/200 NA NA 
1 UPenn 3 T, 1 F, 1 C 1 T 1 T 7/63 0/14 0/47 NA 
3 CMU 3 T, 1 F 0 0 0/420 0/45 NA NA 
3 UPenn 3 T, 1 F, 1 C 0 1 T 0/49 0/31 0/27 NA 

 
 

 

Fig. A-2 Run 5: left shows Husky 1, right shows Husky 3 

Table A-3 Run 5 evaluation of perception 

Husky Alg GT Obj. FP 
Obj. 

FN 
Obj. 

False/All TB 
Obs. 

False/All 
FH Obs. 

False/All 
Car Obs. 

False/All 
Gas Obs. 

1 CMU 3 T, 1 F 4 T 0 1,476/2,577 0/343 NA NA 
1 UPenn 3 T, 1 F, 1 C 0 1 F 0/86 NA 0/80 NA 
3 CMU 3 T, 1 F 1T 0 2/614 0/46 NA NA 
3 UPenn 3 T, 1 F, 1C 0 0 0/105 0/48 0/15 NA 
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Fig. A-3 Run 6: left shows Husky 1, right shows Husky 3 

 
Table A-4 Run 6 evaluation of perception 

Husky Alg GT Obj. FP 
Obj. 

FN 
Obj. 

False/All 
TB Obs. 

False/A
ll FH 
Obs. 

False/All 
Car Obs. 

False/All 
Gas Obs. 

1 CMU 3T, 1 F 4 T 0 1,131/2,330 0/433 NA NA 
1 UPenn 3 T, 1 F, 1 C 0 1 T 0/128 0/8 0/34 NA 
3 CMU 3 T, 1 F 1 T 0 3/383 0/32 NA NA 
3 UPenn 3 T, 1 F, 1C 0 1 T 0/67 0/26 0/9 NA 

 
 

 

Fig. A-4 Run 7: left shows Husky 1, right shows Husky 3 

Table A-5 Run 7 evaluation of perception 

Husky Alg GT 
Obj. 

FP 
Obj. 

FN 
Obj. 

False/All 
TB Obs. 

False/All 
FH Obs. 

False/All 
Car 
Obs. 

False/All 
Gas Obs. 

1 CMU 2 T, 1 F 0 1 F 0/291 NA NA NA 
1 UPenn 2 T, 1F 0 1 F 0/8 NA NA NA 
3 CMU 2 T, 1F 1 T 1 F 1/319 NA NA NA 
3 UPenn 2 T, 1F 0 0 0/45 0/5 NA NA 
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Fig. A-5 Run 8b/8: left shows Husky 1, right shows Husky 3 

 
Table A-6 Run 8b/8 evaluation of perception 

Husky Alg GT 
Obj. 

FP 
Obj. 

FN 
Obj. 

False/All 
TB Obs. 

False/All 
FH Obs. 

False/All 
Car Obs. 

False/All 
Gas Obs. 

1 CMU 2 T 0 0 0/355 NA NA NA 
1 UPenn 2 T 0 1 T 0/32 NA NA NA 
3 CMU 2 T 1 T 0 2/289 NA NA NA 
3 UPenn 2 T 0 0 0/35 NA NA NA 

 
 

 

Fig. A-6 Run 9c/9: left shows Husky 1, right shows Husky 3 

 

Table A-7 Run 9c/9 evaluation of perception 

Husky Alg GT 
Obj. 

FP 
Obj. 

FN 
Obj. 

False/All 
TB Obs. 

False/All 
FH Obs. 

False/All 
Car Obs. 

False/All 
Gas Obs. 

1 CMU 2 T 0 0 0/441 NA NA NA 
1 UPenn 2 T 0 1 T 0/33 NA NA NA 
3 CMU 3 T, 1F 1 T 1 F 163/998 0/57 NA NA 
3 UPenn 3 T, 1F 0 1 T 0/57 0/3 NA NA 
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Fig. A-7 Run 21/21: left shows Husky 1, right shows Husky 3 

 
Table A-8 Run 21/21 evaluation of perception 

Husky Alg GT 
Obj. 

FP 
Obj. 

FN 
Obj. 

False/All 
TB Obs. 

False/All 
FH Obs. 

False/All 
Car Obs. 

False/All 
Gas Obs. 

1 CMU 1 T, 1 F 0 1 F 0/232 0 NA NA 

1 UPenn 1 T, 1 
F, 1 C 0 0 0/60 0/62 0/45 NA 

3 CMU 1 T, 1 F 0 1 F 0/237 0 NA NA 

3 UPenn 1 T, 1 
F, 1 C 0 0 0/73 0/69 0/67 NA 

 

 

Fig. A-8 Run 22/22: left shows Husky 1, right shows Husky 3 

Table A-9 Run 22/22 evaluation of perception 

Husky Alg GT Obj. FP 
Obj. 

FN 
Obj. 

False/All 
TB Obs. 

False/All 
FH Obs. 

False/All 
Car Obs. 

False/All 
Gas Obs. 

1 CMU 1 T, 1 F 0 1 F 0/285 0 NA NA 
1 Penn 1 T, 1 F, 1C 0 0 0/52 0/62 0/20 NA 
3 CMU 1 T, 1 F 1 T 1 F 59/303 0 NA NA 
3 Penn 1 T, 1 F, 1C 0 0 0/68 0/2 0/31 NA 
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Fig. A-9 Run 23/23b: left shows Husky 1, right shows Husky 3 

 
Table A-10 Run 23/23b evaluation of perception 

Husky Alg GT Obj. FP 
Obj. 

FN 
Obj. 

False/A
ll TB 
Obs. 

False/All 
FH Obs. 

False/All 
Car Obs. 

False/All 
Gas Obs. 

1 CMU 1 T, 1 F 0 0 0/466 0/80 NA NA 
1 UPenn 1 T, 1 F, 1 C 0 0 0/66 0/68 0/30 NA 
3 CMU 1 T, 2 F 1 T 1 F 91/472 0/1 NA NA 
3 UPenn 1 T, 2 F, 1 C 1 T 2 F 1/97 0 0/2 NA 

 
In the replication of run 24 on Husky 3, 2 traffic barrels were placed on the left side 
of the gas pumps (left from the reader’s point of view), with one being moved to 
the right side before the start of the run. Thus, there were 3 traffic barrels observable 
but only 2 used during the run as described in Section 3, Table 2. 

 

 

Fig. A-10 Run 24/24: left shows Husky 1, right shows Husky 3 
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Table A-11 Run 24/24 evaluation of perception 

Husky Alg GT 
Obj. 

FP 
Obj. 

FN 
Obj. 

False/All 
TB Obs. 

False/All 
FH Obs. 

False/All 
Car Obs. 

False/All 
Gas Obs. 

1 CMU 2 T 3 T 0 97/874 NA NA NA 
1 UPenn 2 T, 2G 0 0 0/26 NA NA 0/299 
3 CMU 3 T 7 T 0 231/991 NA NA NA 
3 UPenn 3 T, 2G 1 G 1 T 0/16 NA NA 24/355 

 
 

 

Fig. A-11 Run 25b/25: left shows Husky 1, right shows Husky 3 

 
Table A-12 Run 25b/25 evaluation of perception 

Husky Alg GT Obj. FP Obj. FN 
Obj. 

False/All 
TB Obs. 

False/All 
FH Obs. 

False/All 
Car Obs. 

False/All 
Gas Obs. 

1 CMU 2 T 3 T 0 57/529 NA NA NA 
1 UPenn 2 T, 2G 1 G 0 0/33 NA NA 7/113 
3 CMU 2 T 0 0 0/772 NA NA NA 
3 UPenn 2 T, 2G 1T, 1G, 1C 2T 0/6 NA 1/1 4/228 
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Fig. A-12 Run 26/26: left shows Husky 1, right shows Husky 3 

 
Table A-13 Run 26/26 evaluation of perception 

Husky Alg GT 
Obj. 

FP 
Obj. 

FN 
Obj. 

False/All 
TB Obs. 

False/All 
FH Obs. 

False/All 
Car Obs. 

False/All 
Gas Obs. 

1 CMU 2 T 5 T 0 49/341 NA NA NA 
1 UPenn 2 T, 2G 0 0 0/36 NA NA 0/69 
3 CMU 2 T 2 T 0 248/942 NA NA NA 
3 UPenn 2 T, 2G 0 1 T 0/6 NA NA 0/109 
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List of Symbols, Abbreviations, and Acronyms 

2-D 2-dimensional 

3-D 3-dimensional 

ADPM active deformable part model 

CACTF Combined Arms Collective Training Facility 

CMU Carnegie Mellon University  

CWM common world model 

DPM deformable part model 

HRI human-robot interaction  

RANSAC RANdom SAmple Consensus 

RCTA Robotics Collaborative Technology Alliance 

TBS tactical behavior specification 

UPenn University of Pennsylvania
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